Ловушки Пеннинга для фундаментальной физики

Эксперименты на SHIPTRAP и PENTATRAP

Сергей Елисеев

K. Blaum, M. Block, Ch. Böhm, C. Ченмарёв, A. Dörr,
C. Droese, П. Филянин, М. Гончаров,
E. Minaya Ramirez, Д. Нестеренко, Ю.Н. Новиков,
A. Rischka, V. Simon

Масса Нуклидов: от коротко-живущих до стабильных

физика	примеры	δm/m
структура ядер	оболочки, области деформации, гало, границы нейтронной и протонной стабильности,	
	остров стабильности сверхтяжёлых нуклидов	10 ⁻⁶ - 10 ⁻⁷
астрофизика	пути <i>rp</i> - и <i>r</i> -процессов, скорости ядерных реакций, нуклидный состав нейтронных звёзд,	100-10 кэВ
слабые взаимодействия	гипотеза CVC, унитарность СКМ матрицы	10 ⁻⁸ 1 кэВ
метрология, фундаментальные константы нейтринная физика	α (h/m _{cs} , m _{cs} /m _p , m _p /m _e), m _{si} 0vββ, 0v2EC	10 ⁻⁹ - 10 ⁻¹⁰ 100-10 эВ
масса нейтрино стерильное нейтрино СРТ QED в сильных э/м полях	β-распад, ЕС m _p и m _{p̄} m _{e-} и m _{e+} энергия связи электронов	10 ⁻¹⁰ - 10 ⁻¹¹ 10-1 эВ

Ловушка Пеннинга самый точный спектрометр масс

Ловушка Пеннинга

Ловушка Пеннинга

modified cvclotron

axial and

magnetron

Ловушка Пеннинга

циклотронное движение V₊ магнетронное движение V_ аксиальное движение V_z

однозарядные ионы ¹³²Хе: ν₊ ≈ 800 kГц ν_z ≈ 40 kГц ν_ ≈ 1 kГц

присутствие газа (гелий):

циклотронное v_+ и аксиальное v_z затухают

радиус магнетронного движения V_ увеличивается !!!

возбуждение:

конвертация:

 $v_{rf} = v_+ + v_-$

 $r_{-}^{2}(t) + r_{+}^{2}(t) = \text{Const}$

магнетронное движение:
$$v_{-} = v_{c} \cdot \left(\frac{1}{2} - \frac{1}{2}\sqrt{1 - 2v_{z}^{2}}\right)$$

аксиальное движение: $v_{z} = \frac{1}{2\pi}\sqrt{\frac{q}{m}} \cdot \frac{U}{d^{2}}$
 $v_{c}^{2} = v_{+}^{2} + v_{-}^{2} + v_{z}^{2}$ $\frac{\delta v_{c}}{v_{c}} < 10^{-10}$
долгоживущие и стабильные нуклиды
 $v_{c} = v_{+} + v_{-}$ $\frac{\delta v_{c}}{v_{c}} > 10^{-10}$
короткоживущие нуклиды

циклотронное движение: $v_{+} = v_{c} \cdot \left(\frac{1}{2} + \frac{1}{2}\sqrt{1 - 2v_{z}^{2}}\right)$

Установки на базе ловушек Пеннинга

Установки на базе ловушек Пеннинга

тип реакций	1501 RAP	THAN	HBIT	SHIPTRAP	WHI RAP	ર્શ	TRIOT RAD
фрагментация р (0.5 или 1.4 ГэВ) + U							
фрагментация Ионы (100 МэВ/и) + Ве							
слияние - испарение							
спонтанное деление							
деление нейтронами							

Установки на базе ловушек Пеннинга

Установка SHIPTRAP

Фильтр по скоростям SHIP

⁴⁸Ca + ²⁰⁸Pb → ²⁵⁶No* → ²⁵²⁻²⁵⁵No + нейтроны

Установка SHIPTRAP

≈ 5 метров

ловушка очистки

гелий (10⁻⁴ мбар)

методика **ToF-ICR** (Time-of-Flight Ion-Cyclotron-Resonance)

 $\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$ $\left| \mu \right| \sim \nu \cdot r^2$

больше $\mu ightarrow$ меньше ToF

методика **ToF-ICR** (Time-of-Flight Ion-Cyclotron-Resonance)

 $\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$ $\left| \mu \right| \sim \nu \cdot r^2$

больше $\mu ightarrow$ меньше ToF

захват

Metoдика ToF-ICR (Time-of-Flight Ion-Cyclotron-Resonance)

$$\vec{F} = -\vec{\mu} \cdot \frac{\partial \vec{B}}{\partial z}$$
$$\left| \mu \right| \sim v \cdot r^2$$

больше $\mu ightarrow$ меньше ToF

захват

возбуждение *v*_

методика **ToF-ICR** (Time-of-Flight Ion-Cyclotron-Resonance)

методика **ToF-ICR** (Time-of-Flight Ion-Cyclotron-Resonance)

методика ToF-ICR

методика ToF-ICR

однозарядные ионы *М=200 v_c≈5*00 kГц *N*=1000

измерения на SHIPTRAP с 2007

нуклид	T _{1/2} (gs)	T _{1/2} (is)	реакция	σ	счёт в ловушке
²⁵² No	2.44 c	110 мс	²⁰⁶ Pb(⁴⁸ Ca,2n) ²⁵² No	400 нбарн	3.3 ионов / час
²⁵³ No	1.62 мин	<1 мс	²⁰⁷ Pb(⁴⁸ Ca,2n) ²⁵³ No	1 µбарн	8 ионов / час
²⁵⁴ No	51 c	266 мс	²⁰⁸ Pb(⁴⁸ Ca,2n) ²⁵⁴ No	1.8 μбарн	15 ионов / час
²⁵⁵ No	3.52 мин	-	²⁰⁸ Pb(⁴⁸ Ca,1n) ²⁵⁵ No	140 нбарн	1 ионов / час
²⁵⁵ Lr	31.1 c	2.54 c	²⁰⁹ Bi(⁴⁸ Ca,2n) ²⁵⁵ Lr	200 нбарн	1.5 ионов / час
²⁵⁶ Lr	27 c	266 мс	²⁰⁹ Bi(⁴⁸ Ca,1n) ²⁵⁶ Lr	60 нбарн	0.5 ионов / час (48 ионов / 93 часа)

поиск резонансно-ускоренных 0v2EC переходов

захват двух орбитальных электронов ядром

двух-нейтринный (2v2EC)

безнейтринный (0v2EC)

$$m_{\beta\beta} \models \sum_{i} U_{ei}^{2} \cdot m_{i} \mid$$

• эффективная майорановская масса нейтрино

измерение периода полураспада:

- нарушение полного лептонного числа
- нейтрино частицы Майорана, $v = \overline{v}$

если существует:

безнейтринный (0v2EC)

захват двух орбитальных электронов ядром

безнейтринный двойной электронный захват

$$\frac{1}{T_{1/2}} \sim \frac{\Gamma}{(Q - B_{2h} - E_{\gamma})^2 + \frac{1}{4}\Gamma^2}$$

безнейтринный двойной электронный захват

$$\frac{1}{T_{1/2}} \sim \frac{\Gamma}{(Q - B_{2h} - E_{\gamma})^2 + \frac{1}{4}\Gamma^2}$$

резонансное усиление процесса: $T_{1/2} < 10^{23}$ лет

безнейтринный двойной электронный захват

$$\frac{1}{T_{1/2}} \sim \frac{\Gamma}{(0-B_{2h}-E_{\gamma})^2 + \frac{1}{4}\Gamma^2}$$

резонансное усиление процесса: $T_{1/2} < 10^{23}$ лет

поиск переходов с (*Q-B_{2h}-E_γ*) < 1 kэВ ↓ измерение *Q***=***M***₁-***M***₂ с точностью ~ 100 эВ**
измерение Q-значений на SHIPTRAP

исследованные 0 v2EC переходы

$^{112}Sn \rightarrow ^{112}Cd$	JYFLTRAP, S. Rahaman <i>et al.,</i> Phys. Rev. Lett. 103, 042501 (2009)
$^{74}\text{Se} \rightarrow ^{74}\text{Ge}$	JYFLTRAP, V. S. Kolhinen <i>et al.,</i> Phys. Lett. B 684, 17 (2010) FSU, B. J. Mount <i>et al.,</i> Phys. Rev. C 81, 032501(R) (2010)
$^{136}\text{Ce} \rightarrow ^{136}\text{Ba}$	JYFLTRAP, V. S. Kolhinen <i>et al.,</i> Phys. Lett. B 697, 116 (2011)
152 Gd $\rightarrow ^{152}$ Sm	
$^{164}\mathrm{Er} ightarrow ^{164}\mathrm{Dy}$	измерения на SHIPTRAP/GSI
$^{180}W \rightarrow {}^{180}Hf$	
96 Ru \rightarrow 96 Mo	Phys. Rev. Lett. 106 (2011) 052504; 107 (2011) 152501;
$^{162}\text{Er} \rightarrow ^{162}\text{Dy}$	$D_{1} = D_{1} = C = C = C = C = C = C = C = C = C = $
$^{168}\text{Yb} \rightarrow ^{168}\text{Er}$	Phys. Rev. C 63 (2011) 036501, 64 (2011) 026501, 64 (2011) 012501,
$^{106}\text{Cd} \rightarrow {}^{106}\text{Pd}$	Nucl. Phys. A 875 (2012) 1;
156 Dy $\rightarrow $ 156 Gd	
124 Xe $\rightarrow ^{124}$ Te	программа измерений завершена!
$^{130}\text{Ba} \rightarrow ^{130}\text{Xe}$	
$^{184}\text{Os} \rightarrow ^{184}\text{W}$	

$0^+ \rightarrow 0^+$ переходы

между основными ядерными состояниями

2EC-переход	Q (old), kэB	⊿ (old), kэB	Q(new), kəB	⊿ (new), k∋B	Т _{1/2} · m _{2EC} ², лет
152 Gd $\rightarrow ^{152}$ Sm	54.6(3.5)	-0.2(3.5)	55.7(0.2)	0.9(0.2)	10 ²⁶
$^{164}\text{Er} \rightarrow {}^{164}\text{Dy}$	23.3(3.9)	5.2(3.9)	25.07(0.12)	6.81(0.12)	2·10 ³⁰
$^{180}W \rightarrow {}^{180}Hf$	144.4(4.5)	13.7(4.5)	143.1(0.2)	12.4(0.2)	3·10 ²⁷

несколько резонансно-ускоренных переходов в ¹⁵⁶Dy

E_{γ} / keV	I_f^{π}	electron orbitals (XY)	$(B_{XY}) / \text{keV}$	Δ / keV	Γ_{XY} / eV	EF	$ \Psi_X ^2 \Psi_Y ^2$	T _{1/2} / y
1946.375(6)	1^{-}	KL ₁	58.822(8)	0.75(10)	26	4.1×10^{6}	1.23×10^{10}	
1952.385(7)	0^{-}	KM_1	52.192(8)	1.37(10)	35	1.7×10^{6}	2.68×10^{9}	
1988.5(2)	0^{+}	L_1L_1	16.914(8)	0.54(24)	8	2.5×10^{6}	1.65×10^{9}	
2003.749(5)	2^{+}	M_1N_3	2.160(24)	0.04(10)	15	$7.7 imes 10^{8 \$}$	1.52×10^1	

§ For the maximum resonance enhancement with $\Delta = 0$, which is not excluded by the obtained Δ value, the EF is equal to 2.4×10^{10} .

текущая активность на SHIPTRAP

разработка новой методики измерения масс

методика ToF-ICR

однозарядные ионы *М=200 v_c≈5*00 kГц *N*=1000

новая методика измерения масс однозарядных ионов

• увеличение разрешения: ~ 40

• значительно более быстрая

• увеличение точности: ~ 5

определение массы нейтрино с точностью 0.2 эВ

δQ ~ 50 эВ (δQ/m < 3·10⁻¹⁰) → развитие ЕСНо-проекта

определение массы нейтрино с точностью 0.2 эВ

 $\delta Q \sim 1 \Rightarrow B (\delta Q/m < 10^{-11}) \longrightarrow PENTATRAP$

δQ ~ 50 эВ (δQ/m < 3·10⁻¹⁰) → развитие ЕСНо-проекта

SHIPTRAP в 2014

измерение *Q*-значений β-распада ¹⁸⁷Re & EC в ¹⁶³Ho с точностью < 50 эВ

новая методика **PI-ICR** (Phase-Imaging Ion-Cyclotron-Resonance)

 $V_c = V_+ + V_-$

новая методика **PI-ICR** (Phase-Imaging Ion-Cyclotron-Resonance)

delayline MCP детектор RoentDek GmbH DLD40

активный диаметр	42 мм
диаметр канала	25 µм
ху - разешение	70 µм
макс. В	10 мТл

увеличение точности: ~ 4.5 !!!

δ[M(¹²⁴Xe) - M(¹²⁴Te)] ~ 300 эВ

δ[M(¹³²Xe) - M(¹³¹Xe)] ~ 70 эВ !!!

PI-ICR vs. ToF-ICR

 $\Delta M = M(^{132}Xe) - M(^{131}Xe)$

подготовка измерения Q-значений:

(1) β⁻-распад ¹⁸⁷Re Февраль 2014

(2) EC в ¹⁶³Ho ? 2014

с точностью < 50 эВ

определение массы нейтрино с точностью 0.2 эВ

δQ ~ 50 эВ (δQ/m < 3·10⁻¹⁰) → развитие ЕСНо-проекта

определение массы нейтрино с точностью 0.2 эВ

расположение

измерение масс высокозарядных, долгоживущих нуклидов до урана с точностью < 10⁻¹¹

измерение частот в ловушке

¹⁸⁷Os⁴⁵⁺:

ν₊≈26 МГц, ν₋≈7 kГц, ν_z = 600 kГц (В = 7 Тл, V₀ = - 20.5 В)

 R_+ , $R_- << 1 \,\mu$ M, $R_z \simeq 10 \,\mu$ M

 $\Delta B/B = 10^{-6}/cm^3$, $\Delta B/B(t) = 10^{-10}/vac$, $\Delta U/U(t) = 10^{-8}/vac$

подавление вибраций

frequency / Hz

стабилизация температуры

time / d

экранирование ионов от внешних полей

δВ/В < 2·10⁻⁹ в комнате

RIAN

- \rightarrow shielding factor of magnet is ~ 100
- → compensation factor of Helmholtz coils is ~ 10

δB/B < 2·10⁻¹² в ловушке

стабилизация уровня на уровне 0.1 мм

стабилизация давления на уровне **1 µбар**

стабилизация давления и уровня гелия

состояние на 31.12.2013

удержание ионов Хе и измерение

их аксиальной частоты

состояние на 31.12.2013

удержание ионов Хе и измерение

их аксиальной частоты

измерение Q-значения

β⁻-распада ¹⁸⁷Re

с точностью 1 эВ

2015?